Transport Equations for Semiconductors: 773 (Lecture Notes in Physics, 773)

Transport Equations for Semiconductors: 773 (Lecture Notes in Physics, 773)

by Ansgar Jüngel (Author)

Synopsis

Semiconductor devices are ubiquitous in the modern computer and telecommunications industry. A precise knowledge of the transport equations for electron flow in semiconductors when a voltage is applied is therefore of paramount importance for further technological breakthroughs.

In the present work, the author tackles their derivation in a systematic and rigorous way, depending on certain key parameters such as the number of free electrons in the device, the mean free path of the carriers, the device dimensions and the ambient temperature. Accordingly a hierarchy of models is examined which is reflected in the structure of the book: first the microscopic and macroscopic semi-classical approaches followed by their quantum-mechanical counterparts.

$105.71

Quantity

20+ in stock

More Information

Format: Illustrated
Pages: 332
Edition: 2009
Publisher: Springer
Published: 17 Mar 2009

ISBN 10: 3540895256
ISBN 13: 9783540895251

Media Reviews

From the reviews:

The book is a comprehensive review of the main transport equations in semiconductors, presenting the state of the art from the point of view of mathematical modeling. ... The book is addressed to applied mathematicians, solid state physicists and electrical and electronic engineers, but it is as well a good introduction for graduate and Ph.D. students specializing in the transport of charge carriers in semiconductors. (Vittorio Romano, Mathematical Reviews, Issue 2011 k)