by Chengqi Zhang (Author), Chengqi Zhang (Author), Zili Zhang (Author)
Solving complex problems in real-world contexts, such as financial investment planning or mining large data collections, involves many different sub-tasks, each of which requires different techniques. To deal with such problems, a great diversity of intelligent techniques are available, including traditional techniques like expert systems approaches and soft computing techniques like fuzzy logic, neural networks, or genetic algorithms. These techniques are complementary approaches to intelligent information processing rather than competing ones, and thus better results in problem solving are achieved when these techniques are combined in hybrid intelligent systems. Multi-Agent Systems are ideally suited to model the manifold interactions among the many different components of hybrid intelligent systems.
This book introduces agent-based hybrid intelligent systems and presents a framework and methodology allowing for the development of such systems for real-world applications. The authors focus on applications in financial investment planning and data mining.
Format: Paperback
Pages: 208
Edition: 2004
Publisher: Springer
Published: 13 Jun 2008
ISBN 10: 3540209085
ISBN 13: 9783540209089
Book Overview: Springer Book Archives