Spear Operators Between Banach Spaces: 2205 (Lecture Notes in Mathematics)

Spear Operators Between Banach Spaces: 2205 (Lecture Notes in Mathematics)

by Antonio Pérez (Contributor), Miguel Martín (Contributor), Javier Merí (Contributor), Vladimir Kadets (Author)

Synopsis

This monograph is devoted to the study of spear operators, that is, bounded linear operators $G$ between Banach spaces $X$ and $Y$ satisfying that for every other bounded linear operator $T:X\longrightarrow Y$ there exists a modulus-one scalar $\omega$ such that$\|G + \omega\,T\|=1+ \|T\|$.
This concept extends the properties of the identity operator in those Banach spaces having numerical index one. Many examples among classical spaces are provided, being one of them the Fourier transform on $L_1$. The relationships with the Radon-Nikodym property, with Asplund spaces and with the duality, and some isometric and isomorphic consequences are provided. Finally, Lipschitz operators satisfying the Lipschitz version of the equation above are studied. The book could be of interest to young researchers and specialists in functional analysis, in particular to those interested in Banach spaces and their geometry. It is essentially self-contained and only basic knowledge of functional analysis is needed.

$46.68

Save:$2.81 (6%)

Quantity

10 in stock

More Information

Format: Paperback
Pages: 184
Edition: 1st ed. 2018
Publisher: Springer
Published: 17 Apr 2018

ISBN 10: 3319713329
ISBN 13: 9783319713328