Data Mining, Second Edition: Concepts and Techniques (The Morgan Kaufmann Series in Data Management Systems)

Data Mining, Second Edition: Concepts and Techniques (The Morgan Kaufmann Series in Data Management Systems)

by Micheline Kamber (Author), Jiawei Han (Author), Jian Pei Professor (Author)

Synopsis

Our ability to generate and collect data has been increasing rapidly. Not only are all of our business, scientific, and government transactions now computerized, but the widespread use of digital cameras, publication tools, and bar codes also generate data. On the collection side, scanned text and image platforms, satellite remote sensing systems, and the World Wide Web have flooded us with a tremendous amount of data. This explosive growth has generated an even more urgent need for new techniques and automated tools that can help us transform this data into useful information and knowledge. Like the first edition, voted the most popular data mining book by KD Nuggets readers, this book explores concepts and techniques for the discovery of patterns hidden in large data sets, focusing on issues relating to their feasibility, usefulness, effectiveness, and scalability. However, since the publication of the first edition, great progress has been made in the development of new data mining methods, systems, and applications. This new edition substantially enhances the first edition, and new chapters have been added to address recent developments on mining complex types of data- including stream data, sequence data, graph structured data, social network data, and multi-relational data.

$6.72

Save:$46.93 (87%)

Quantity

1 in stock

More Information

Format: Hardcover
Pages: 800
Edition: 2
Publisher: Morgan Kaufmann
Published: 04 Jun 2006

ISBN 10: 1558609016
ISBN 13: 9781558609013

Media Reviews
Now, for the first time, there is an outstanding text on data mining which covers the science as well as the process in a comprehensive manner and with great lucidity. --Laks Lakshmanan, Concordia University, on the 1st ed: The second edition of Han and Kamber Data Mining: Concepts and Techniques updates and improves the already comprehensive coverage of the first edition and adds coverage of new and important topics, such as mining stream data, mining social networks, and mining spatial, multi-media and other complex data. This book will be an excellent textbook for courses on Data Mining and Knowledge Discovery.Gregory Piatetsky-Shapiro, President, KDnuggets The second edition is the most complete and up-to-date presentation on this topic. Compared to the already comprehensive and thorough coverage of the first edition it adds the state-of-the-art research results in new topics such as mining stream, time-series and sequence data as well as mining spatial, multimedia, text and web data. This book is a must have for all instructors, researchers, developers and users in the area of data mining and knowledge discovery. -Hans-Peter Kriegel, University of Munich, Germany
Author Bio
Jiawei Han is Professor in the Department of Computer Science at the University of Illinois at Urbana-Champaign. Well known for his research in the areas of data mining and database systems, he has received many awards for his contributions in the field, including the 2004 ACM SIGKDD Innovations Award. He has served as Editor-in-Chief of ACM Transactions on Knowledge Discovery from Data, and on editorial boards of several journals, including IEEE Transactions on Knowledge and Data Engineering and Data Mining and Knowledge Discovery. Micheline Kamber is a researcher with a passion for writing in easy-to-understand terms. She has a master's degree in computer science (specializing in artificial intelligence) from Concordia University, Canada. Jian Pei is currently a Canada Research Chair (Tier 1) in Big Data Science and a Professor in the School of Computing Science at Simon Fraser University. He is also an associate member of the Department of Statistics and Actuarial Science. He is a well-known leading researcher in the general areas of data science, big data, data mining, and database systems. His expertise is on developing effective and efficient data analysis techniques for novel data intensive applications. He is recognized as a Fellow of the Association of Computing Machinery (ACM) for his contributions to the foundation, methodology and applications of data mining and as a Fellow of the Institute of Electrical and Electronics Engineers (IEEE) for his contributions to data mining and knowledge discovery . He is the editor-in-chief of the IEEE Transactions of Knowledge and Data Engineering (TKDE), a director of the Special Interest Group on Knowledge Discovery in Data (SIGKDD) of the Association for Computing Machinery (ACM), and a general co-chair or program committee co-chair of many premier conferences.