Thermal Imaging Cameras

Thermal Imaging Cameras

by ThomasWilliams (Author)

Synopsis

The ability to see through smoke and mist and the ability to use the variances in temperature to differentiate between targets and their backgrounds are invaluable in military applications and have become major motivators for the further development of thermal imagers. As the potential of thermal imaging is more clearly understood and the cost decreases, the number of industrial and civil applications being exploited is growing quickly. In order to evaluate the suitability of particular thermal imaging cameras for particular applications, it is important to have the means to specify and measure meaningful performance characteristics. Thermal Imaging Cameras: Characteristics and Performance expands our current understanding of thermal imaging and, most importantly, provides a sound quantitative basis for evaluating the suitability of various thermal imagers for particular applications. Utilizing a practical approach that keeps theory and mathematics to a minimum, the text reviews the important performance parameters for industrial, laboratory, and surveillance applications as well as how these parameters can be measured. The author, T. L. Williams, a distinguished expert on designing and testing thermal imaging systems and recipient of the Callendar Medal from the Institute of Measurement and Control, focuses on the standard form of imaging camera but also includes descriptions of the different specialized forms of thermal imagers useful to anyone working with these systems. Providing detailed descriptions of the equipment and techniques that can be used for testing complete thermal imagers as well as in the testing of the main subunits of a thermal imager, this comprehensive reference will prove invaluable not only to those who use, test, and design thermal imagers, but also to anyone designing equipment or making measurements in the thermal band of wavelengths.

$129.12

Quantity

5 in stock

More Information

Format: Hardcover
Pages: 238
Edition: 1
Publisher: Taylor & Francis
Published: 01 Apr 2009

ISBN 10: 1420071858
ISBN 13: 9781420071856