by Adrian G. Barnett (Author), Annette J. Dobson (Author)
An Introduction to Generalized Linear Models, Fourth Edition provides a cohesive framework for statistical modelling, with an emphasis on numerical and graphical methods. This new edition of a bestseller has been updated with new sections on non-linear associations, strategies for model selection, and a Postface on good statistical practice.
Like its predecessor, this edition presents the theoretical background of generalized linear models (GLMs) before focusing on methods for analyzing particular kinds of data. It covers Normal, Poisson, and Binomial distributions; linear regression models; classical estimation and model fitting methods; and frequentist methods of statistical inference. After forming this foundation, the authors explore multiple linear regression, analysis of variance (ANOVA), logistic regression, log-linear models, survival analysis, multilevel modeling, Bayesian models, and Markov chain Monte Carlo (MCMC) methods.
Using popular statistical software programs, this concise and accessible text illustrates practical approaches to estimation, model fitting, and model comparisons.
Format: Illustrated
Pages: 392
Edition: 4
Publisher: Chapman and Hall/CRC
Published: 11 Apr 2018
ISBN 10: 1138741515
ISBN 13: 9781138741515
Praise for the Third Edition:
Overall, this new edition remains a highly useful and compact introduction to a large number of seemingly disparate regression models. Depending on the background of the audience, it will be suitable for upper-level undergraduate or beginning post-graduate courses.
-Christian Kleiber, Statistical Papers (2012) 53
The chapters are short and concise, and the writing is clear ... explanations are fundamentally sound and aimed well at an upper-level undergrad or early graduate student in a statistics-related field. This is a very worthwhile book: a good class text and a practical reference for applied statisticians.
-Biometrics
This book promises in its introductory section to provide a unifying framework for many statistical techniques. It accomplishes this goal easily. ... Furthermore, the text covers important topics that are frequently overlooked in introductory courses, such as models for ordinal outcomes. ... This book is an excellent resource, either as an introduction to or a reminder of the technical aspects of generalized linear models and provides a wealth of simple yet useful examples and data sets.
-Journal of Biopharmaceutical Statistics, Issue 2