by Carlos Daniel Paulino (Author), Peter Müller (Author), M. Antónia Amaral Turkman (Author)
Meaningful use of advanced Bayesian methods requires a good understanding of the fundamentals. This engaging book explains the ideas that underpin the construction and analysis of Bayesian models, with particular focus on computational methods and schemes. The unique features of the text are the extensive discussion of available software packages combined with a brief but complete and mathematically rigorous introduction to Bayesian inference. The text introduces Monte Carlo methods, Markov chain Monte Carlo methods, and Bayesian software, with additional material on model validation and comparison, transdimensional MCMC, and conditionally Gaussian models. The inclusion of problems makes the book suitable as a textbook for a first graduate-level course in Bayesian computation with a focus on Monte Carlo methods. The extensive discussion of Bayesian software - R/R-INLA, OpenBUGS, JAGS, STAN, and BayesX - makes it useful also for researchers and graduate students from beyond statistics.
Format: Hardcover
Pages: 254
Publisher: Cambridge University Press
Published: 28 Feb 2019
ISBN 10: 1108481035
ISBN 13: 9781108481038
Book Overview: This integrated introduction to fundamentals, computation, and software is your key to understanding and using advanced Bayesian methods.