Numerical Methods of Statistics (Cambridge Series in Statistical and Probabilistic Mathematics)

Numerical Methods of Statistics (Cambridge Series in Statistical and Probabilistic Mathematics)

by JohnF.Monahan (Author)

Synopsis

This book explains how computer software is designed to perform the tasks required for sophisticated statistical analysis. For statisticians, it examines the nitty-gritty computational problems behind statistical methods. For mathematicians and computer scientists, it looks at the application of mathematical tools to statistical problems. The first half of the book offers a basic background in numerical analysis that emphasizes issues important to statisticians. The next several chapters cover a broad array of statistical tools, such as maximum likelihood and nonlinear regression. The author also treats the application of numerical tools; numerical integration and random number generation are explained in a unified manner reflecting complementary views of Monte Carlo methods. Each chapter contains exercises that range from simple questions to research problems. Most of the examples are accompanied by demonstration and source code available from the author's website. New in this second edition are demonstrations coded in R, as well as new sections on linear programming and the Nelder-Mead search algorithm.

$141.98

Quantity

20+ in stock

More Information

Format: Hardcover
Pages: 464
Edition: 2
Publisher: Cambridge University Press
Published: 18 Apr 2011

ISBN 10: 0521191580
ISBN 13: 9780521191586

Media Reviews
Review from the previous edition '... an excellent tool both for self-study and for classroom teaching. It summarizes the state of the art well and provides a solid basis, through the programs that go with the book, for numerical experimentation and further development. All in all, this is a good book to have ... I recommend it.' D. Denteneer, Mathematics of Computing
Review from the previous edition: '... this book grew out of notes for a statistical computing course ... The goal of this course was to prepare the doctoral students with the computing tools needed for statistical research. I very much liked this book and recommend it for this use.' Jaromir Antoch, Zentralblatt fur Mathematik
Review from the previous edition: '... a really nice introduction to numerical analysis. All the classical subjects of a numerical analysis course are discussed in a surprisingly short and clear way ... When adapting the examples, the first half of the book can be used as a numerical analysis course for any other discipline ...' Adhemar Bultheel, Bulletin of the Belgian Mathematical Society
Review from the previous edition: '... an extremely readable book. This would be an excellent book for a graduate-level course in statistical computing.' Journal of the American Statistical Association
Author Bio
John F. Monahan is a Professor of Statistics at North Carolina State University where he joined the faculty in 1978 and has been a professor since 1990. His research has appeared in numerous computational as well as statistical journals. He is also the author of A Primer on Linear Models (2008).